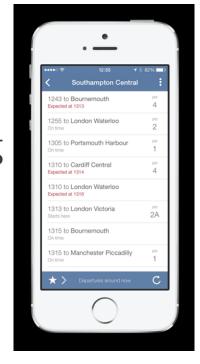


ITS and Public Transport: Rail

Professor John Preston Chair in Rail Transport

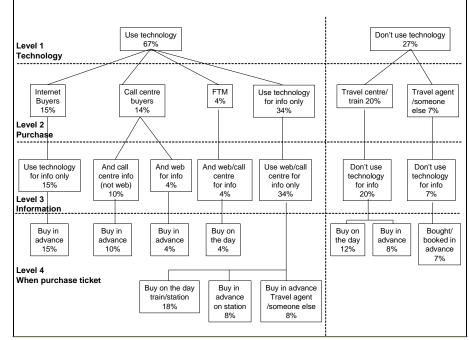


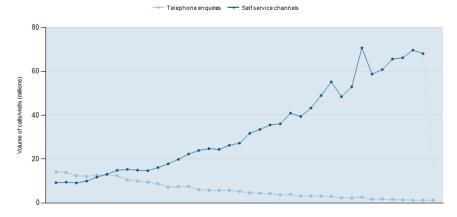
What can ITS do for railways?

- Automatic Train Location
- Automatic Train Control/Driver Assistance Systems
- Smart Ticketing and Intelligent Pricing
- Security and Surveillance
- Multimodal, real-time passenger information & navigation systems
- On train and station displays
- Through Journey Apps

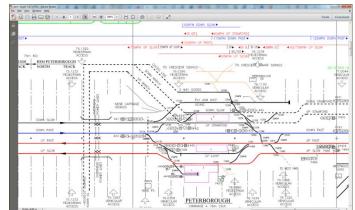
TSAG's 30 year challenges

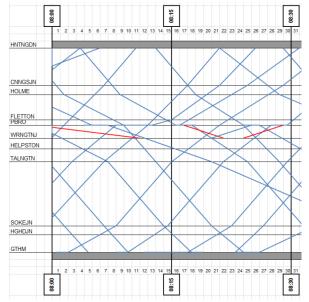
Cost: Halve the cost of rail operations Capacity: Double network capacity Carbon: Halve the industry's carbon footprint Customer: Increase customer satisfaction to 99%


Competitiveness:

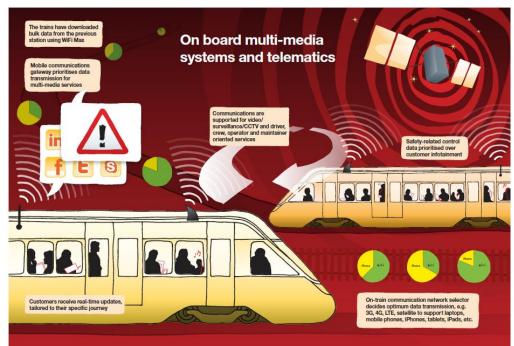

Case Study (I) Rail Passenger Needs

- Limited (short-run) effects in terms of passenger and revenue growth
- Greater potential for cost reductions (e.g. retail distribution)
- Initially mitigated by fragmented market and technology proliferation
- But internet technology beginning to dominate.

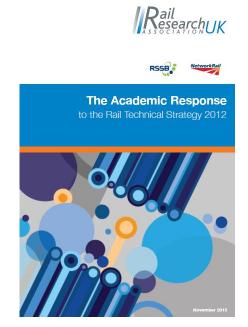



Case Study (II): Capacity Management Systems

CUI Measures (%) 07:00 to 09:00 190 Nodes and associated links								
			Max	Mean	•			
Nodes - Existi	0	0	64	25 26	15038			
- Optin	nised	0	81	26				
Links - Existi	0	0	51	23	HNTNGDM CNNGSJM HOLME			
- Optim	nised	0	73	24	FLETTON			


Smarter scheduling could eliminate train waiting times and increase train movements by 26%.

Southampton



Academic Response to Rail Southampton Technical Strategy 2012

	Technical theme								
Common Design Concept	Command Control Comms	Energy	Infrastructure	Rolling Stock	Information	Customer Experience			
Whole-system reliability	8	8		88	00	۵			
Resilience		0		8					
Security	8			08	۵				
Automation	08	в	۵		00	۵			
Simplicity			۵	8	۵				
FiexIbility		8		8	80	80			
Sustainability	8	88	80	8		۵			

design concept has high relevance to technical theme design concept has moderate relevance

Key Issue: Understanding the Human: Machine Interface. Beware the ironies of automation.

5